Acidity Reduction of Bio-Oil by Methylic Esterification Reactions
Download

Keywords

Upgrading
esterification
neutralization
thermal cracking
triglycerides

How to Cite

WIENHAGE, G. H.; RAMOS, E. S.; CHIARELLO, L. M.; BOTTON, V.; WIGGERS, V. R. Acidity Reduction of Bio-Oil by Methylic Esterification Reactions. Angolan Mineral, Oil & Gas Journal, v. 2, n. 2, p. 21-27, 19 Apr. 2021.

Abstract

An alternative to fossil fuels is the use of triglyceride biomass for conversion to biofuel by the thermal cracking process, also known as pyrolysis. The liquid phase, called bio-oil, has physicochemical properties like petroleum-derived fuels. One of the undesirable characteristics of bio-oil is the high acidity index, due to the presence of short-chain carboxylic acids in its composition. This feature makes refining and use inviable. The objective of this work was to perform esterification reactions using bio-oil, produced from soybean oil pyrolysis already characterized, in order to reduce its acidity index. Besides that, the esterified bio-oil was submitted to different washing experiments to decrease even more the final acidity. For the esterification reaction 25 g of bio-oil was used at a temperature of 64 °C, using from 0.8 to 2.2% sulfuric acid and 0.5 to 99.5% mass ratio of methyl alcohol and bio-oil. The highest acidity index reduction after 20 min was 81.2%, the esterified bio-oil reduced from 129 to 32.4 mg KOH g-1. Esterification reaction followed by washing and neutralization can decrease even more those values and, the acidity index can reach zero.

https://doi.org/10.47444/amogj.v2i2.4
Download

References

Araújo, A.M. de M., Lima, R. de O., Gondim, A.D., Diniz, J., Souza, L. Di, Araujo, A.S. de, 2017. Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41. Renew. Energy 101, 900–906. https://doi.org/10.1016/j.renene.2016.09.058

Beims, R.F., Bertoli, S.L., Botton, V., Ender, L., Simionatto, E.L., Meier, H.F., Wiggers, V.R., 2017. Co-Processing of Thermal Cracking Bio-Oil At Petroleum Refineries. Brazilian J. Pet. Gas 11, 99–113. https://doi.org/10.5419/bjpg2017-0009

Beims, R.F., Botton, V., Ender, L., Scharf, D.R., Simionatto, E.L., Meier, H.F., Wiggers, V.R., 2018. Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel 217, 175–184. https://doi.org/10.1016/j.fuel.2017.12.109

Beims, R.F., Simonato, C.L., Wiggers, V.R., 2019. Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renew. Sustain. Energy Rev. 112, 521–529. https://doi.org/10.1016/j.rser.2019.06.017

Botton, V., Riva, D., Simionatto, E.L., Wiggers, V.R., Ender, L., Meier, H.F., Barros, A.A.C., 2012. Craqueamento termo-catalítico da mistura óleo de fritura usado - Lodo de estamparia têxtil para a produção de óleo com baixo índice de acidez. Quim. Nova 35, 677–682. https://doi.org/10.1590/S0100-40422012000400004

Botton, V., Torres De Souza, R., Wiggers, V.R., Scharf, D.R., Simionatto, E.L., Ender, L., Meier, H.F., 2016. Thermal cracking of methyl esters in castor oil and production of heptaldehyde and methyl undecenoate. J. Anal. Appl. Pyrolysis 121, 387–393. https://doi.org/10.1016/j.jaap.2016.09.002

Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., Kuo, C.-T., 2017. Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. J. Taiwan Inst. Chem. Eng. 73, 1–11. https://doi.org/10.1016/J.JTICE.2016.04.014

Chiarello, L., Porto, T., Barros, A., Simionatto, E., Botton, V., Wiggers, V., 2020. Bosting an oil refinery into a biorefinery. Angolan Miner. Oil Gas J. 1, 1–5. https://doi.org/10.47444/amogj.v1i1.1

Fan, L., Ruan, R., Li, J., Ma, L., Wang, C., Zhou, W., 2020. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite. Appl. Energy 263, 114629. https://doi.org/10.1016/j.apenergy.2020.114629

Gollakota, A.R.K., Reddy, M., Subramanyam, M.D., Kishore, N., 2016. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 58, 1543–1568. https://doi.org/10.1016/J.RSER.2015.12.180

Hassen-Trabelsi, A.B., Kraiem, T., Naoui, S., Belayouni, H., 2014. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Manag. 34, 210–218. https://doi.org/10.1016/j.wasman.2013.09.019

Huber, G.W., Corma, A., 2007. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chemie - Int. Ed. 46, 7184–7201. https://doi.org/10.1002/anie.200604504

Iha, O.K., Alves, F.C.S.C., Suarez, P.A.Z., Silva, C.R.P., Meneghetti, M.R., Meneghetti, S.M.P., 2014. Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Ind. Crops Prod. 52, 95–98. https://doi.org/10.1016/j.indcrop.2013.10.001

Junming, X., Jianchun, J., Yunjuan, S., Yanju, L., 2008. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass and Bioenergy 32, 1056–1061. https://doi.org/10.1016/j.biombioe.2008.02.002

Kim, J.-H., Jung, J.-M., Cho, S.-H., Tsang, Y.F., Wang, C.-H., Lee, J., Kwon, E.E., 2019. Upgrading bio-heavy oil via esterification of fatty acids and glycerol. J. Clean. Prod. 217, 633–638. https://doi.org/10.1016/j.jclepro.2019.01.289

Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., Jeguirim, M., 2015. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Process. Technol. 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007

Kraiem, T., Hassen, A. Ben, Belayouni, H., Jeguirim, M., 2017. Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environ. Sci. Pollut. Res. 24, 9951–9961. https://doi.org/10.1007/s11356-016-7704-z

Kumar, N., 2017. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 190, 328–350. https://doi.org/10.1016/j.fuel.2016.11.001

Li, L., Yan, B., Li, H., Yu, S., Ge, X., 2020. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst. Renew. Energy 146, 643–650. https://doi.org/10.1016/j.renene.2019.07.015

Lima, D.G., Soares, V.C.D., Ribeiro, E.B., Carvalho, D.A., Cardoso, É.C.V., Rassi, F.C., Mundim, K.C., Rubim, J.C., Suarez, P.A.Z., 2004. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. Anal. Appl. Pyrolysis 71, 987–996. https://doi.org/10.1016/j.jaap.2003.12.008

Makarfi Isa, Y., Ganda, E.T., 2018. Bio-oil as a potential source of petroleum range fuels. Renew. Sustain. Energy Rev. 81, 69–75. https://doi.org/10.1016/J.RSER.2017.07.036

Mancio, A.A., Costa, K.M.B. da, Ferreira, C.C., Santosa, M.C., Lhamas, D.E.L., Mota, S.A.P. da, Leão, R.A.C., Souza, R.O.M.A. de, Araújoa, M.E., L.E.P. Borges, Machado, N.T., 2016. Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels. Ind. Crops Prod. 91, 32–43. https://doi.org/10.1016/j.indcrop.2012.08.019

Menshhein, G., Costa, V., Chiarello, L.M., Scharf, D.R., Simionato, E.L., Botton, V., Meier, H.F., Wiggers, V.R., Ender, L., 2019a. Concentration of renewable products of crude bio-oil from thermal cracking of the methyl esters in castor oil. Renew. Energy 142, 561–568. https://doi.org/10.1016/j.renene.2019.04.136

Menshhein, G., Costa, V., Chiarello, L.M., Scharf, D.R., Simionato, E.L., Botton, V., Meier, H.F., Wiggers, V.R., Ender, L., 2019b. Experimental data of the distillation of bio-oil from thermal cracking of methyl ester in castor oil. Data Br. 25, 104325. https://doi.org/10.1016/j.dib.2019.104325

Molefe, M., Nkazi, D., Mukaya, H.E., 2019. Method Selection for Biojet and Biogasoline Fuel Production from Castor Oil: A Review. Energy & Fuels 33, 5918–5932. https://doi.org/10.1021/acs.energyfuels.9b00384

Radlein, D.S.A.G., Piskorz, J.K., Majerski, P.A., 1996. Method of upgrading biomass pyrolysis liquids for use as fuels and as a source of chemicals by reaction with alcohols. CA21655858A1.

Ramos, E.S., Zimmermann, D., Beims, R.F., Chiarello, L.M., Botton, V., Simionatto, E.L., Wiggers, V.R., 2020. Evaluation of ethylic and methylic esterification reactions to reduce acidity of crude bio‐oil. Environ. Prog. Sustain. Energy 39, e13441. https://doi.org/10.1002/ep.13441

Ratton Coppos, A.R., Kahn, S., Borges, L.E.P., 2018. Biofuels production by thermal cracking of soap from brown grease. Ind. Crops Prod. 112, 561–568. https://doi.org/10.1016/j.indcrop.2017.12.010

Shitao, Y., Cao, X., Wu, S., Chen, Q., Li, L., Li, H., 2020. Effective pyrolysis of waste cooking oils into hydrocarbon rich biofuel on novel mesoporous catalyst with acid and alkali coexisting. Ind. Crops Prod. 150, 112362. https://doi.org/10.1016/j.indcrop.2020.112362

Silva, V.T., Sousa, L.A., 2013. Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels, The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals. © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00003-6

Stedile, T., Ender, L., Meier, H.F., Simionatto, E.L., Wiggers, V.R., 2015. Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renew. Sustain. Energy Rev. 50, 92–108. https://doi.org/10.1016/j.rser.2015.04.080

Suota, M.J., Simionatto, E.L., Scharf, D.R., Meier, H.F., Wiggers, V.R., 2019. Esterification, Distillation, and Chemical Characterization of Bio-Oil and Its Fractions. Energy & Fuels 33, 9886–9894. https://doi.org/10.1021/acs.energyfuels.9b01971

Trabelsi, A.B.H., Zaafouri, K., Baghdadi, W., Naoui, S., Ouerghi, A., 2018. Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002

Wang, C., Hu, Y., Chen, Q., Lv, C., Jia, S., 2013. Bio-oil upgrading by reactive distillation using p-toluene sulfonic acid catalyst loaded on biomass activated carbon. Biomass and Bioenergy 56, 405–411. https://doi.org/10.1016/j.biombioe.2013.04.026

Wetroff, G., Thillay, L., Divachetf, G., Khaladji, J., 1957. Pyrolysis of Ricinoleates - PCT US2807633.

Wiggers, V.R., Beims, R.F., Ender, L., Simionatto, E.L., Meier, H.F., 2017. Renewable Hydrocarbons from Triglyceride’s Thermal Cracking, in: Jacob-Lopes, E., Zepka, L.Q. (Eds.), Frontiers in Bioenergy and Biofuels. InTech. https://doi.org/10.5772/65498

Wiggers, V.R., Meier, H.F., Wisniewski, A., Chivanga Barros, A.A., Wolf Maciel, M.R., 2009a. Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresour. Technol. 100, 6570–6577. https://doi.org/10.1016/j.biortech.2009.07.059

Wiggers, V.R., Wisniewski, A., Madureira, L.A.S., Barros, A.A.C., Meier, H.F., 2009b. Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant. Fuel 88, 2135–2141. https://doi.org/10.1016/j.fuel.2009.02.006

Wiggers, V.R., Zonta, G.R., França, A.P., Scharf, D.R., Simionatto, E.L., Ender, L., Meier, H.F., 2013. Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel 107, 601–608. https://doi.org/10.1016/j.fuel.2012.11.011

Wisniewski, A., Wiggers, V.R., Simionatto, E.L., Meier, H.F., Barros, A.A.C., Madureira, L.A.S., 2010. Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel 89, 563–568. https://doi.org/10.1016/j.fuel.2009.07.017

Wisniewski Jr., A., Wosniak, L., Scharf, D.R., Wiggers, V.R., Meier, H.F., Simionatto, E.L., Wisniewski Jr, A., Wosniak, L., Scharf, D.R., Wiggers, V.R., Meier, H.F., Simionatto, E.L., 2015. Upgrade of Biofuels Obtained from Waste Fish Oil Pyrolysis by Reactive Distillation. J. Braz. Chem. Soc. 26, 224–232. https://doi.org/10.5935/0103-5053.20140251

Xiu, S., Shahbazi, A., 2012. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 16, 4406–4414. https://doi.org/10.1016/J.RSER.2012.04.028

Xu, J., Jiang, J., Sun, Y., Chen, J., 2010. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresour. Technol. 101, 9803–9806. https://doi.org/10.1016/j.biortech.2010.06.147

Xu, J., Jiang, J., Zhang, T., Dai, W., 2013. Biofuel production from catalytic cracking of triglyceride materials followed by an esterification reaction in a scale-up reactor. Energy and Fuels 27, 255–261. https://doi.org/10.1021/ef3018173

Xu, J., Jiang, J., Zhao, J., 2016. Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renew. Sustain. Energy Rev. 58, 331–340. https://doi.org/10.1016/j.rser.2015.12.315

Xu, L., Cheng, J.-H., Liu, P., Wang, Q., Xu, Z.-X., Liu, Q., Shen, J.-Y., Wang, L.-J., 2019. Production of bio-fuel oil from pyrolysis of plant acidified oil. Renew. Energy 130, 910–919. https://doi.org/10.1016/j.renene.2018.07.012

Yu, S., Wu, S., Li, L., Ge, X., 2020. Upgrading bio-oil from waste cooking oil by esterification using SO42−/ZrO2 as catalyst. Fuel 276, 118019. https://doi.org/10.1016/j.fuel.2020.118019

Downloads

Download data is not yet available.